20 diciembre 2024
1209688759

Investigadores de la UHU desarrollan un modelo para predecir la mortalidad de pacientes Covid

foto articulo ETSI 1Profesores del Departamento de Tecnologías de la Información de la Escuela Técnica Superior de Ingeniería de la Universidad de Huelva han publicado un estudio que analiza la mortalidad de pacientes diagnosticados con COVID-19 mediante el uso de técnicas de aprendizaje automático. El aprendizaje automático es una rama de la inteligencia artificial que permite que las máquinas sean capaces de identificar patrones en los datos y hacer predicciones. Los autores han desarrollado un modelo para predecir la mortalidad de pacientes diagnosticados con COVID-19, empleando fundamentalmente los datos de laboratorio provenientes de las pruebas clínicas realizadas durante su hospitalización.

El trabajo, titulado Machine LearningApplied to ClinicalLaboratory Data in Spainfor COVID-19 OutcomePrediction: ModelDevelopment and Validation, ha sido publicado en la revista Journal of Medical Internet Research, con un factor de impacto de 5.03 en el cuartil Q1 del JournalCitationReport (JCR) en las categorías Medical Informatics y HealthCareSciences&Services. Puede consultarse en https://doi.org/10.2196/26211.

Los autores del estudio han sido Juan L. Domínguez Olmedo, Jacinto Mata Vázquez y Victoria Pachón Álvarez, pertenecientes al Grupo de Investigación ‘Ingeniería de la Información y el Conocimiento’, en colaboración con Álvaro Gragera Martínez, experto del Hospital Juan Ramón Jiménez.

Para la elaboración de este estudio se ha utilizado una muestra de historias clínicas anonimizadas proporcionada por un grupo hospitalario privado español (HM Hospitales).Concretamente, los datos provenían de 1.823 pacientes que habían sido hospitalizados con diagnóstico de COVID-19, y de los cuáles el 14.4% había fallecido.

Resultados obtenidos

El estudio partió de la idea de entender y predecir la severidad de la COVID-19 en los pacientes ingresados en el hospital, empleando para ello parámetros bioquímicos y hematológicos, además del sexo y la edad de los pacientes.

Como refleja el estudio, una de las causas más importantes de mortalidad en estos pacienteses el síndrome inflamatorio, relacionado con parámetros como la proteína C-reactiva o la enzima lactato deshidrogenasa (LDH).Otro factor importante son los trastornos de coagulación (trombos), identificables mediante ciertos parámetros sanguíneos. Si la edad del paciente se une a los parámetros bioquímicos y hematológicos, «la predicción de la severidad de la enfermedad resulta mucho más exacta», se resalta en el estudio.

En este trabajo también se realiza un análisis de la importancia de las variables en el modelo. Entre las 32 variables empleadas, las más relevantes para la predicción fueron: el nivel de la enzima LDH, el nivel de la proteína C-reactiva, el porcentaje de neutrófilos, el nivel de urea, la edad y el porcentaje de eosinófilos.

Tal y como indican los autores del estudio, «no es fácil establecer criterios estrictos de mortalidad en pacientes con COVID-19, pues aún no se conoce exactamente el comportamiento del virus en el organismo. Seguramente coexisten factores inmunológicos, genéticos y ambientales, que relacionados con parámetros de laboratorio pueden permitir entender mejor dicha mortalidad». No obstante, gracias a técnicas de inteligencia artificial como la desarrollada por los autores, «se pueden obtener modelos capaces de predecir la severidad de la enfermedad según las características particulares de cada paciente», explican los investigadores de la UHU.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

PUBLICIDAD
Sindicato Csif
Faisem

Las cookies de este sitio web se usan para personalizar el contenido y los anuncios, ofrecer funciones de redes sociales y analizar el tráfico. Además, compartimos información sobre el uso que haga del sitio web con nuestros partners de redes sociales, publicidad y análisis web, quienes pueden combinarla con otra información que les haya proporcionado o que hayan recopilado a partir del uso que haya hecho de sus servicios. Ver detalles

ACEPTAR
Aviso de cookies
Ir al contenido